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A method is developed for calculating by computer the electrostatic energy matrices 
in the Racah-Slater method. The method considers three basic points: the simplicity 
of the programming, the reliability of the results and computer time optimization. 
A general description of the computer program which is based on this method is given. 

1. INTRODUCTION 

The calculation of the energy matrices of complex spectra by the “Slater-Racah 
method” is long and tedious and can be performed efficiently only with the aid 
of a computer. Several computer programs have already been written in this 
area [l-4]. The algorithms used for calculating the algebraic formulas of the 
electrostatic energy matrix elements (# 1 CiCj Vij 1 #‘) are based upon reduction 
to the matrix element (& / VI, ) Q&,). We wrote a computer program using the 
alternative approach where (# 1 CiCi Vij 1 I,!?) is decomposed in terms of one- 
particle-operator matrices. This approach has the following advantages: 

a. The problem is reduced to the calculation of one-particle operator matrix 
elements which is by nature simpler than that of two-particle operators. 

b. As shown previously [5], the decomposition mentioned above can be 
made in two different ways, thus providing an easy check of the calculation. This 
check has been found to be an essential tool in the construction of the matrices. 
The importance of such a check is fully discussed in Ref. [5]. 

c. In many cases, particularly simple expressions are obtained [5, 61. 
d. Since magnetic and effective interactions can also be decomposed in 

terms of one particle-operators of the same type, it is possible to use the same 
routines to calculate these interactions as well. 

* This work was supported by the National Bureau of Standards, Washington, DC. 
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In this paper we describe the entire algorithm used in the program. 
In Section II we review the decomposition of the electrostatic interaction 

operator into products of one-particle operators. In Section III we discuss the 
choice of a suitable coupling scheme. In Section IV we introduce the method for 
deriving the formula for a general matrix element of a one-particle operator. 

The computer program based on this algorithm [7] calculates and checks for- 
mulas and numerical values of matrix elements of electrostatic and two-body 
electrostatic effective interactions. A brief review of the program, its possibilities 
and limitations is given in Section V. 

II. DECOMPOSITION OF THE ELECTROSTATIC INTERACTION MATRIX 
INTO MATRICES OF ONE-PARTICLE OPERATORS [8] 

The electrostatic interaction between the electrons in the “central field approxi- 
mation” can be written in the following way: 

zj e”lrij = e” 1 2 X”(n,Ian,lb , na’la’nb’lb’) 
7; n,l&,l*n,‘l,‘n*‘l~ 

X C Z,!‘“‘(n,l, , n,‘l,‘) . Zj(k’(nblb , no’&‘). (1) 

where Zjk)(n/, n’l’) is a tensor operator of degree k operating on the i-th electron, 
with reduced matrix elements given by 

and 

(nnlr 11 Zi(“)(nl, n’l’) j! n”‘l”) = 6(n”, II) S(l’, i) 6(n”, n’) 6(E”, I’) 

X”(n,Z,r& , na’Zn’nb’lb’) = (I, ji 6) 11 I,‘)(& /I C(li) Ij Zb’) 

x R(li’(n,l,nblb , na’la’nb’l,,‘), 

where Rk are the Slater integrals and C(?) are the spherical harmonices normalized 
by Eq. (5.19) of Ref. [9]. (This reference is referred to as F.R. in the sequel). 

The coefficient of X7( can be rewritten as 

1 
1 + S(n, , nb) i3(1, , lb) S(n,‘, n,‘) 6(1,‘, 4’) S7c(na*anb’b ’ na’L’nb’1b’)7 (2) 

where 
Sk(n,lanb/b , na’la’nb’lb‘) = c zj”‘(n,!, , n,‘l,‘) ’ zjk)(nblb , nb’lb’). 

ii, 

In the “Racah-Slater method,” Xk are considered as adjustable parameters 
and one has to calculate only the matrices of (2). 
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S” can be further written in either of the following equivalent expressions 

z’yn,z, ) n,‘&‘) . Z’“‘(nJb ) ??b’lb’) 

- w 3 4s’) @b 7 ?I’) wo , .G’)[LP2 Z’“‘h741 , &‘&A (34 
Z’“‘(n& ) n,‘&‘) . P’(n,l, ) nn’la’) 

- Wb , lo’> Wb , n,‘> W, , k’)[W’” Z(“Ynl,lb , n,‘ld, Ob) 
where ,P) = 1:“‘. 

For the matrix elements of (3) we get, by F.R. (15.16) 

5 (-y--- V-l (# II Z%,l, , FZ’L’) I/ f)(#” II Z%%~* 2 %‘h’> II $7 

- wa 3 h’) Qb 2 n,‘) W, , L’)L , P” (# II ~‘“‘hi~ , h’h> II $7, (da) 

where J, J” and J”’ are the total angular momenta of the states s,!J, C/I” and #“‘. 
respectively. We use the traditional contractions [x] = (2x + I), [x, y ...I := 
(2x + 1)(2y + 1) ..* . 

Thus the calculation of the energy matrix (1) is reduced to that of the matrix 
elements of the one-particle operators Z’“‘). 

Because of the special characteristics of the operators Z(“‘) the summations 
over #” and z,P are reduced each to a single configuration P and I”“, respectively 
where, in general, P # I”“. In such cases (4a) and (4b) lead to two basically 
different formulas resulting in the same numerical values and providing an element- 
by-element check of the matrices. There is a symmetry between (4a) and (4b) in 
the sense that one expression is obtained from the other by the index exchange 
a t+ b and therefore only one routine is needed to calculate both of them. 

It should be mentioned here that for parameters of the type Xk(nlnZ, n’l’n’l’), 
the configurations P and P’ in (4) are identical, and both (4a) and (4b) lead 
to the same expression and the check is trivial. On the other hand, for parameters 
of the type P(nln’l’, nln’l’) with nl # n’l’, although P’ = P’ the commutativity 
of Z’“‘(nl, nl) and Zk(n’Z’, n’l’) still provides a check. 

III. COUPLING SCHEMES-THE STANDARD SCHEME 

The calculation of various interactions in different coupling schemes might be 
algebraically interesting. However, a program capable of handling all types of 
coupling schemes is by nature rather complicated. 
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It was shown by Racah [IO] that once one has the energy matrices in any 
arbitrary coupling scheme, it is always possible to obtain the components of the 
physical states in any other desired scheme by diagonalizing these energy matrices 
with fictitious values of the parameters. For practical purposes we therefore 
developed a calculation method for a “Standard Scheme” which is in most atomic 
problems close to the physical scheme. We now define this scheme. 

The Standard Scheme 

Let r be a general configuration of q-ordered shells: r = l?Zp ... l,“p [II]. 
In the i-th shell there are Ni electrons whose individual quantum numbers are nili . 

The Standard Scheme is an L-S coupling scheme where the angular momenta 
of each shell are coupled to the resultant angular momenta of all the shells on its 
left. Specifically, the states of r in the standard scheme will be 

where C&L, characterizes the states of the i-th shell in L-S coupling, and S,Li 
are the resultant orbital and spin angular momenta, respectively, of all the shells 
from 1 to i. 

In the sequel we refer only to states in the standard scheme. 
In cases where no confusion might arise we denote a general state in the standard 

scheme by specifying the ordered shells alone omitting the additional quantum 
numbers, i.e., 

/ pp . . . -- -- 
12) z 1 l,N1(o!,S,L,), lfy”&L,) S,L, )...) l,Na((r,S,L,) S,L,). (5) 

IV. THE METHOD OF CALCULATING THE MATRIX 
ELEMENT (4 (/ Z(")(Z, Z')lj #')l 

Since we are interested in a method which is simple for programming, we deal 
with all possible cases in a similar way (even if it is roundabout in some of them), 
using simple elementary repeated steps. 

The outline of the method is as follows: We change the order of the shells in 
the states $ and 4’ to a new order defined below, still retaining the standard 
coupling scheme. In this new order we use a closed formula for the matrix elements 
of the corresponding operator Z(“). (This closed formula was calculated once 
and is given below.) The expression for ($ I/ Z(k)(Z, Z’)ij #‘), which is obtained in 
this way is unnecessarily complicated and must then be contracted to the simplest 
possible form. The three main stages of the method are therefore: 

1 1+5 and 4 are antisdmmetricai States in the Standard Scheme. 
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1. The transformation to the new shell order; 
2. The use of the closed formula in the reordered standard scheme; 
3. The contraction process. 

These stages are discussed in detail below. 

1. The Reordering of the Shells 

In order to calculate the matrix element 

where Ii = I and I, = I’ # I, or vice versa, and where k, ... k, is a permutation 
of 1 ... r in which k, # r, we remove the shells lzil ... l,“p by F.R. (15.7) and 
transform to the following shell order: 

Ill2 ..’ l,-,li+l ... lf--llj+l ‘.. IJ’. 

The matrix element (6) is thus expressed in terms of matrix elements in the 
reordered scheme: 

In the case I = I’, the matrix element 

is similarly expressed in terms of 

($5 . . . zfd” I/ Z’“‘(Z, 1) /I 1,“1 *.. $9”). (74 

we denote the bra and ket in the reordered scheme by & and #,‘, respectively. 
Specifically, the transformation from (6) to (7) is done by two elementary 

repeated steps: First the shells I, , I,-, ,..., I,+1 are removed one by one by repeated 
use of F.R. (15.7). Each such step introduces 6j symbol and a multiplicative factor. 
For example, in the first step, removing the I, shell, one has 

where GaPI and C& represent all other quantum numbers appearing in the bra 
and ket of (6), respectively. 
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Secondly, the remaining shells are reordered, by another repeated step in which 
two neighboring shells exchange places. This step will be called “exchange” in 
the sequel. Since in any stage the coupling remains in the standard form, such 
exchange introduces a summation, a recoupling coefficient and a phase factor 
which originates from the antisymmetrization of the states. Specificahy, 

The phase factor ( -l)N~XNt enters since N, x Nt electron transpositions have 
been made. The recoupling coefficient is an application of F.R. Eq. (11.10). 

It was also found useful to use the following identity: 

where L and L’ are the total orbital angular momenta of 4 and $‘, respectively. 
We calculate that side of (10) which involves a smaller number of exchanges 

during the reordering process. This saves complications in the contraction stage 
(paragraph 3 below). 

2. The Formula for (#z /I Z’“)(l, Z’)II #i) 2 

As mentioned above, the calculation of the matrix element (#, j/ ZtL)(Z, Z’)lj $z’) 
is made only once and is used throughout the program without further modifica- 
tions. We present its derivation by the second quantization technique where it 
turns out to be extremely short compared to conventional methods. 

As was shown by Judd [12], the second quantization form of Z(“)(1, , 1,) is [13] 

Z’k”(l, , I,) = -{a+b}‘ok’ (2/[k])1/2 9 (11) 

where a+ creates an n,Zl electron and b destroys an n,l, electron. 
Since u+ and b are double tensors of rank (l/2, II) and (l/2, 12), respectively, 

which operate each on a different system it is possible to use here directly Eq. (15.4) 
of F.R. 

z 9~ and t/q’ are antisymmetrized states in the reordered scheme. 
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(cr,S,L, ) lfil(cxlSIL1) S,L, ) 12”“(c&L,) SL /j {a+b}(O”) II GoS&Lo ) l~-$xl’SI’L1’) 

S1’Ll’l~+1(012’S2’L2)) SL’) 

= (GoSoLo , /,N’(~L,S,L,) SJ, 11 a+ /I oloSoLo , l,N’-‘(a,‘S,‘L,‘) S1’L,‘) 

x (12”z&L, /I b :I ,?+I oip’S2’L2’)[S, S, L, L’, k]l” 

x g f$: if/E ;; $. (12) 

so and Lo are the spin and orbital total angular momenta of all other shells with nl 
different from both n,l, and n,l, . a0 denotes the additional quantum numbers 
needed to characterize the states. 

We make use of the known identities: 

1. F.R. Eq. (12.14) 

s, S,’ l/2 

t I 
s2 S,l 1 

S 
112 = s;, 

S , 

ss 0 
s; I$ [l/2, p/2 (-])&‘+1~2+%+S* 

2. F.R. Eq. (15.7’) 
-- -- 

(cUoSoLo , l~(a,S,L,) S,EI I/ a+ I/ (YoSoLo , l~~‘(cxI’SI’L,‘) S,‘&‘) 

- = (-1) ~,+z,-iL,‘;L,+s,+1/2+s,‘+~~ [El ) 
L1’, 3, ) sl’p2 

(L, I,’ 11 s, 
x lLl, Ll 

S,’ l/2 
Lo 

!I 
sl, sl so (l~alSILl II a+ I ~;vI-l~I’Sl’LI’) I 

3. Equations (31) (32) of Ref. [12] 

(11 c&L, Ii a+ /j l,N’-lol,‘S,‘L,‘) Nl 

= (- l)N’ &&[S, ) L,]l’” (l;y’ol,S,L1 I} I~--loI1’s~‘L1’), 

(l~o&L, I/ b /j l~+1cy2’S2’L2’) 

= (-1) N,+l+Szi-L,-l/P-Z,~S,‘-L,’ 

x zily, [S,‘, L,‘]“2 (&Y2S2L, { / lp+1cx2’s2’L2’). 

In addition, remembering that (#= // PJ(1, , l,)li #=‘) is a reduced matrix ele- 
ment only with respect to the orbital angular momentum while (I+%~ 1) {u+b}‘O”) I( #,‘) 
is reduced with respect to both spin and orbital angular momenta, we have by (11) 
and by F.R. (14.5), 

(4~ II Z’“‘(Zl , 1,) II 4~‘) = -[S, kl-1’2 v’~(#z il (a+b}(Ok) II $=‘). 
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We finally get 

($2 II Z(%l , 12) II #z’) 

= %S, S’) \&UN, + 1)(-l) N,+~,+Z,+~;,+L,+L,'~L~+L,'+S,+S,+S,'+~'-S,'+S+~/~ 

- -, 
x [L2’, L, ) L, ) El’, L, L’, S2’, s, ) s, ) sly2 

I 
2, ;I Zl) 

1 1 G' - -, 
,s, 

x S,’ 1 Sl’ l/2 (S, Sr’ 1/2j ;r ;1, ) 
s, t s IS,’ S, s, i 

i 1 L2 L? ; 

x (Z,N’ollSILl I} Zl”‘~‘~l’s,‘L,‘)(Z,“2~~s~L~ (1 zp’1012’s2’L2’). 

The notations in (13) and (14) are as in (12). 
(13) 

For the case where 1, = I, we get by Ref. [14] (see p. 187) and by F.R. Eq. (15.7’) 
-- 

(ol,S,L, , Zf+(01,S,L,) SL j/ Z’“‘(Z, , ZJ /I GOSOLO , Z~(O(~‘S~‘L~‘) SL’) 

x <zy OINSRLn {I zfJ1--lol&‘L1’). 

3. The Contraction of the FormuZas 

(14) 

As was mentioned above, the formula obtained as a result of stages 1 and 2 
contains unnecessary summations. The purpose of the contraction process is to 
remove these summations using known identities. In our computer program, 
the five following identities are used: 
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In all applications made until now [15] these identities were sufficient to contract 
the formulas to the most simple form. 

The outline of the contraction process is as follows: The summations appearing 
in the uncontracted formula are treated one by one in reverse order to that of 
their appearance, i.e., starting with the last and ending with the first. For each 
summation in its turn, the possibilities of applying the identities are checked one 
by one in a fixed order. If a certain identity is applicable the corresponding summa- 
tion is replaced by the right hand side of the identity and the checking process 
starts from the beginning, i.e., again from the last appearing summation. This 
procedure is needed since after applying a certain identity it may be possible that 
another application of an identity which was not possible previously can now be 
made. The fixed order by which the possibilities of applying the identities are 
checked enables maximal contraction only when the initial number of summations 
is not too large. In order to avoid unnecessary summations already in the uncon- 
tracted formula we make use of Eq. (10) as was detailed above. 

It should be pointed out that the formulas for Sk, which are obtained by inserting 
the formulas of the appropriate Z(“)‘s to (4), can in many cases be further con- 
tracted removing the summation appearing in (4). However, it was found con- 
venient to calculate the matrices of the Z’“‘s separately and apply (4) only 
numerically. This will be further detailed in Section V. 

SUMMARY 

The method presented above for calculating the algebraic formulas for 
(# II Z’“‘K 4 II vu . is simple to program, being based on just two elementary 
repeated steps: The removal of a right shell, and the exchange of two neighboring 
shells. The additional contraction stage also does not introduce any complication 
in the programming. The computer time in the entire process remains negligible 
(as will be detailed in Section V). 

The procedure of checking the result, which is performed by means of (4), 
does not require any additional effort in programming since the same routines 
are used to calculate both (4a) and (4b), owing to their symmetry between the 
indices a and b. 
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As was mentioned in the Introduction, magnetic and effective interactions 
can also be decomposed in terms of one-particle operators. Therefore exactly 
the same method can be applied for their calculation. Formulas analogous to 
Eq. (12) for the cases of spin orbit and hyperfine interactions are given in the 
appendix. 

V. THE COMPUTER PROGRAM-GENERAL REVIEW 

Input. The input of the program is most simple. It contains only the names of 
the configurations r and r’ between which the interaction is to be calculated. 
(It is possible of course that r = P). 

Main Stages. As a first step the involved parameters (Slater integrals) are 
determined. The program treats the parameters one at a time performing for every 
parameter the following steps: 

a. The intermediate configurations I’” and P” of Eq. (4) are determined. 
(The order of the shells in the intermediate configurations is determined so that 
the total number of “exchanges” in the transformation to the recordered scheme 
is minimal.) 

b. The symbols which characterize the quantum numbers appearing in the 
standard scheme are defined, and the formulas for the involved operators ZcK) 
are then calculated. 

c. The numerical matrices of these formulas are calculated. This part, 
being independent of the method described in Sections II-IV, will not be detailed 
in this paper. We only mention here that in this part lists of terms and c.f.p. tables 
are read from a special file which was prepared for that purpose for the shells 
s, P, d, .K 

d. The matrix elements of (4a) and (4b) are obtained and checked one by 
one by comparing the results. In fact, in the step c the factors (-I)L-L”-k[L] 
and ( -l)L-L’“-LIL] of (4) are attached to the formulas of the left ZtK) of (4a) 
and (4b), respectively. Consequently the results of the present step are obtained 
simply by usual matrix multiplication and addition. Moreover, since the final 
matrices are diagonal with respect to S and L, these operations are performed for 
each pair of values of S and L separately, thus saving computer memory. 

e. The final step is the construction of the matrices for the different J’s 
appearing in the corresponding problem. 

General Characteristics-Possibilities and Limitations 

The program is written in Fortran IV for a CDC 6400 computer which has a 
memory of 64K words. 
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MemorJl. For the derivation of the formulas only 20000, words are needed 
and there is no limitation on the configurations involved. For the numerical 
calculation, the size of the memory needed depends on the length of the lists of 
terms involved. The program is suitable for configurations containing up to 
200 terms where 62000, words are sufficient. For bigger configurations the dimen- 
sion of several vectors in the program should be extended and correspondingly 
the memory used should be greater. 

Computer time. The derivation of the formulas (including the contraction 
process) takes two seconds at most for each parameter. Therefore there is no need 
for further improvements of this stage. On the other hand, the process of the 
numerical calculation is incomparably longer (between a few seconds to 10 min 
for a parameter, depending on the complexity of the corresponding formula). 
Here there are many possibilities for improvements, for instance, the calculation 
of the coefficients of F”‘(I, , II) in the configuration I’ = If”ll,“z ‘.. I: can be per- 
formed in a much shorter way with in the configuration l,“l and then be extended 
to I’. Another possibility of improvement is to do the numerical calculations 
(in appropriate cases) of the full expressions (4a) and (4b) and not of the involved 
ZY’s separately. This shortens the calculation only when a further contraction 
of the entire formula can be performed, removing the summations of (4). However, 
as the above described method does not take too much time, it was not found 
worthwhile complicating the program for such improvements. 

We quote characteristic numbers for two cases: The first example is a calculation 
of d5p matrices which are of a commonly used size. (Here there are altogether 
6 electrostatic and effective two-body parameters. The number of terms is 88 and 
the number of j’s is 9.) The total computer time needed for the calculation is 
30 sec. 

The second is the particularly complicated complex: 

f 2d2 + f 2ds + f 2s2 + fd2p +,fdsp +.fi2p + (I” + d3s + d2s’. 

The number of electrostatic parameters (including interaction between configura- 
tions and two-body effective interactions) in the whole complex is 160. The total 
number of terms is 603, and the number of j’s is I 1. The total computer time 
needed in the construction of the matrices (including checkings) for the whole 
complex is about 2 hr. Taking into account that a single diagonalization of that 
complex takes about 90 min, and many dozens of diagonalizations are needed 
for the interpretation of a single pertinent spectrum, this makes the calculation 
time very satisfactory. 
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APPENDIX: FORMULAS FOR ONE-PARTICLE INTERACTION IN THE 

REORDERED SCHEME 

Spin-Orbit Interaction 

-- 
(cY,&,&, , l>(+S,L,) SLJ /I C Si . li I/ &S,L, , I?(a,‘S,‘L,‘) S”L’J) 

= IV,{&&. + 1)(2&, + 1) 3/2)1/z (- l)s~+%+s,‘+L,‘+s+s’+z~+J 

, 1,2 s S’ l\ \ s S’ 1 j L L’ 1 ’ [‘, L, “, L’, ‘, ) L, ) ‘,‘, L, 1 i L’ L j )S,l I s, I s, (L,’ L, L” t 

x c ,, ” C-1) L;ts;+s,+L,tllz \I/2 

Is, s: S,‘jlL, 1: Lyr 
1 l/2( 4 

z$Jr-'ol"S L 

Hyperfine Interaction 
-- 

(cY,,S,L, , Z~(qS,L,) SLJ 11 c (SC’2’):1’ Ij OL,,$,&, , lf$.$Sr‘LT’) S’L’J’) 

= 3N,{W, + 1x21, + 1)/2(2h - 1)(2& + 3w2 

x (~l)Sot~~+S,'tL,'tL,+S+L+lr+l [J, J’, S, S’, L, L’, S, , S,‘, L, , L,‘]1’2 
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